Perbandingan Estimator Histogram dan Estimator Kernel

نویسندگان

چکیده

Salah satu hal penting dalam analisis statistik adalah prosedur estimasi suatu fungsi padat peluang yang biasa disebut densitas. Ada dua metode pendekatan biasanya digunakan, yaitu parameter terkait dengan asumsi distribusi tertentu dan densitas secara non parametrik. Metode parametrik sering kita jumpai histogram.
 Beberapa kelemahan histogram menjadi acuan untuk dikembangkannya lain kernel, dimana estimator kernel ini mempunyai perlu diestimasi bandwidth h. Yang rumusan masalah kajian pustaka bagaimana memilih dari pada f di R membandingkannya Kesimpulan dapat diambil antara lain: (1) Estimasi adalah:
 , (2) Estimator :
 (3) mengatasi kelemahan- histogram, (4) Tingkat konvergensi lebih baik (5) Pemilihan unbiased cross validation (least validation) asymtotik menghasilkan optimum

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust nonparametric kernel regression estimator

In robust nonparametric kernel regression context,weprescribemethod to select trimming parameter and bandwidth. Through solving estimating equations, we control outlier effect through combining weighting and trimming. We show asymptotic consistency, establish bias, variance properties and derive asymptotics. © 2016 Elsevier B.V. All rights reserved.

متن کامل

Using Kernel Density Estimator in Nonlinear Mixture

Generally, blind separation of sources from their nonlinear mixtures is rather difficult. This nonlinear mapping, constituted by unsupervised linear mixing followed by unknown and invertible nonlinear distortion, is found in many signal processing cases. We propose using a kernel density estimator incorporated within an equivariant gradient algorithm to separate the nonlinear mixed sources. The...

متن کامل

On the Convolution Type Kernel Regression Estimator

This paper discusses modiications of the convolution type kernel regression estimator. One modiication uses kernel quantile estimators and is analyzed more detailed. This regression estimator combines advantages of local polynomial and kernel regression estimators and can be applied for small to large sample size. Its properties are illustrated by simulation results and asymptotic theory. Espec...

متن کامل

Asymptotic normality of Powell’s kernel estimator

In this paper, we establish asymptotic normality of Powell’s kernel estimator for the asymptotic covariance matrix of the quantile regression estimator for both i.i.d. and weakly dependent data. As an application, we derive the optimal bandwidth that minimizes the approximate mean squared error of the kernel estimator.

متن کامل

An Empirical Bayesian Kernel Density Estimator

Often times there is a need to infer the true underlying probability based on the observations, such as in, including but not limited to, data-mining, optimizing the process control parameters etc., Histograms, very rudimentary empirical density estimators, divide the whole data range into either equal or unequal sub intervals (bins) and then obtain the frequency of occurrence of each bin. They...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fraktal

سال: 2021

ISSN: ['2776-0073']

DOI: https://doi.org/10.35508/fractal.v2i1.4036